

ARTICLE

https://doi.org/10.1038/s41467-021-21497-6

Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy

Cheng-Tao Jiang ^{1,8}, Kai-Ge Chen^{2,8}, An Liu², Hua Huang¹, Ya-Nan Fan¹, Dong-Kun Zhao¹, Qian-Ni Ye¹, Hou-Bing Zhang¹, Cong-Fei Xu^{1,3}, Song Shen ^{1,4,5™}, Meng-Hua Xiong¹, Jin-Zhi Du¹, Xian-Zhu Yang^{1,5} & Jun Wang ^{1,5,6,7™}

Modulating effector immune cells via monoclonal antibodies (mAbs) and facilitating the coengagement of T cells and tumor cells via chimeric antigen receptor- T cells or bispecific T cell-engaging antibodies are two typical cancer immunotherapy approaches. We speculated that immobilizing two types of mAbs against effector cells and tumor cells on a single nanoparticle could integrate the functions of these two approaches, as the engineered formulation (immunomodulating nano-adaptor, imNA) could potentially associate with both cells and bridge them together like an 'adaptor' while maintaining the immunomodulatory properties of the parental mAbs. However, existing mAbs-immobilization strategies mainly rely on a chemical reaction, a process that is rough and difficult to control. Here, we build up a versatile antibody immobilization platform by conjugating anti-IgG (Fc specific) antibody (α Fc) onto the nanoparticle surface (α Fc-NP), and confirm that α Fc-NP could conveniently and efficiently immobilize two types of mAbs through Fc-specific noncovalent interactions to form imNAs. Finally, we validate the superiority of imNAs over the mixture of parental mAbs in T cell-, natural killer cell- and macrophage-mediated antitumor immune responses in multiple murine tumor models.

 ¹ School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China.
² School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China.
³ Shenzhen Bay Laboratory, Shenzhen 518132, PR China.
⁴ National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
⁵ Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
⁶ Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, PR China.
⁷ Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.